RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 044, 15 стр. (Mi sigma1838)

Field Calculus: Quantum and Statistical Field Theory without the Feynman Diagrams

John E. Gough

Department of Physics, Aberystwyth University, SY23 3BZ, Wales, UK

Аннотация: For a given base space $M$ (spacetime), we consider the Guichardet space over the Guichardet space over $M$. Here we develop a “field calculus” based on the Guichardet integral. This is the natural setting in which to describe Green function relations for Boson systems. Here we can follow the suggestion of Schwinger and develop a differential (local field) approach rather than the integral one pioneered by Feynman. This is helped by a DEFG (Dyson–Einstein–Feynman–Guichardet) shorthand which greatly simplifies expressions. This gives a convenient framework for the formal approach of Schwinger and Tomonaga as opposed to Feynman diagrams. The Dyson–Schwinger is recast in this language with the help of bosonic creation/annihilation operators. We also give the combinatorial approach to tree-expansions.

Ключевые слова: quantum field theory, Guichardet space, Feynman versus Schwinger, combinatorics.

MSC: 81T18, 05C75, 81S25

Поступила: 18 марта 2022 г.; в окончательном варианте 12 июня 2022 г.; опубликована 14 июня 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.044



Реферативные базы данных:
ArXiv: 2203.09296


© МИАН, 2024