RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 050, 43 стр. (Mi sigma1846)

Эта публикация цитируется в 1 статье

Spherical Representations of $C^*$-Flows II: Representation System and Quantum Group Setup

Yoshimichi Ueda

Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan

Аннотация: This paper is a sequel to our previous study of spherical representations in the operator algebra setup. We first introduce possible analogs of dimension groups in the present context by utilizing the notion of operator systems and their relatives. We then apply our study to inductive limits of compact quantum groups, and establish an analogue of Olshanski's notion of spherical unitary representations of infinite-dimensional Gelfand pairs of the form $G < G\times G$ (via the diagonal embedding) in the quantum group setup. This, in particular, justifies Ryosuke Sato's approach to asymptotic representation theory for quantum groups.

Ключевые слова: spherical representation, KMS state, ordered $*$-vector space, operator system, inductive limit, quantum group, $\sigma$-$C^*$-algebra.

MSC: 22D25, 22E66, 46L67, 17B37

Поступила: 7 февраля 2022 г.; в окончательном варианте 26 июня 2022 г.; опубликована 5 июля 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.050



Реферативные базы данных:
ArXiv: 2201.10931


© МИАН, 2024