RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 055, 30 стр. (Mi sigma1851)

Эта публикация цитируется в 1 статье

Mirror Symmetry for Truncated Cluster Varieties

Benjamin Gammagea, Ian Leb

a Department of Mathematics, Harvard University, USA
b Mathematical Sciences Institute, Australian National University, Australia

Аннотация: In the algebraic setting, cluster varieties were reformulated by Gross–Hacking–Keel as log Calabi–Yau varieties admitting a toric model. Building on work of Shende–Treumann–Williams–Zaslow in dimension 2, we describe the mirror to the GHK construction in arbitrary dimension: given a truncated cluster variety, we construct a symplectic manifold and prove homological mirror symmetry for the resulting pair. We also describe how our construction can be obtained from toric geometry, and we relate our construction to various aspects of cluster theory which are known to symplectic geometers.

Ключевые слова: homological mirror symmetry, cluster varieties, almost toric fibrations.

MSC: 53D37, 13F60

Поступила: 25 августа 2021 г.; в окончательном варианте 15 июля 2022 г.; опубликована 19 июля 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.055



Реферативные базы данных:
ArXiv: 2103.12232


© МИАН, 2024