RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 057, 62 стр. (Mi sigma1853)

Эта публикация цитируется в 1 статье

Equivariant Coarse (Co-)Homology Theories

Christopher Wulff

Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstr. 3-5, D-37073 Göttingen, Germany

Аннотация: We present an Eilenberg–Steenrod-like axiomatic framework for equivariant coarse homology and cohomology theories. We also discuss a general construction of such coarse theories from topological ones and the associated transgression maps. A large part of this paper is devoted to showing how some well-established coarse (co-)homology theories, whose equivariant versions are either already known or will be introduced in this paper, fit into this setup. Furthermore, a new and more flexible notion of coarse homotopy is given which is more in the spirit of topological homotopies. Some, but not all, coarse (co-)homology theories are even invariant under these new homotopies. They also led us to a meaningful concept of topological actions of locally compact groups on coarse spaces.

Ключевые слова: equivariant coarse homology, equivariant coarse cohomology, equivariant coarse assembly, equivariant coarse coassembly, generalized coarse homotopies.

MSC: 51F30, 55N35, 46L85

Поступила: 3 октября 2021 г.; в окончательном варианте 15 июля 2022 г.; опубликована 26 июля 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.057



Реферативные базы данных:
ArXiv: 2006.02053


© МИАН, 2024