RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 058, 16 стр. (Mi sigma1854)

Systolic Inequalities for Compact Quotients of Carnot Groups with Popp's Volume

Kenshiro Tashiro

Department of Mathematics, Tohoku University, Sendai Miyagi 980-8578, Japan

Аннотация: In this paper, we give a systolic inequality for a quotient space of a Carnot group $\Gamma\backslash G$ with Popp's volume. Namely we show the existence of a positive constant $C$ such that the systole of $\Gamma\backslash G$ is less than ${\rm Cvol}(\Gamma\backslash G)^{\frac{1}{Q}}$, where $Q$ is the Hausdorff dimension. Moreover, the constant depends only on the dimension of the grading of the Lie algebra $\mathfrak{g}=\bigoplus V_i$. To prove this fact, the scalar product on $G$ introduced in the definition of Popp's volume plays a key role.

Ключевые слова: sub-Riemannian geometry, Carnot groups, Popp's volume, systole.

MSC: 53C17, 26B15, 22E25

Поступила: 10 февраля 2022 г.; в окончательном варианте 28 июля 2022 г.; опубликована 2 августа 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.058



Реферативные базы данных:
ArXiv: 2201.00128


© МИАН, 2024