RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 060, 18 стр. (Mi sigma1856)

The Gauge Group and Perturbation Semigroup of an Operator System

Rui Dong

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Аннотация: The perturbation semigroup was first defined in the case of $*$-algebras by Chamseddine, Connes and van Suijlekom. In this paper, we take $\mathcal{E}$ as a concrete operator system with unit. We first give a definition of gauge group $\mathcal{G}(\mathcal{E})$ of $\mathcal{E}$, after that we give the definition of perturbation semigroup of $\mathcal{E}$, and the closed perturbation semigroup of $\mathcal{E}$ with respect to the Haagerup tensor norm. We also show that there is a continuous semigroup homomorphism from the closed perturbation semigroup to the collection of unital completely bounded Hermitian maps over $\mathcal{E}$. Finally we compute the gauge group and perturbation semigroup of the Toeplitz system as an example.

Ключевые слова: operator algebras, operator systems, functional analysis, noncommutative geometry.

MSC: 46L07, 47L25, 58B34, 11M55

Поступила: 1 декабря 2021 г.; в окончательном варианте 28 июля 2022 г.; опубликована 9 августа 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.060



Реферативные базы данных:
ArXiv: 2111.13076


© МИАН, 2024