RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 060, 31 стр. (Mi sigma186)

Эта публикация цитируется в 17 статьях

Generating Operator of XXX or Gaudin Transfer Matrices Has Quasi-Exponential Kernel

Evgeny Mukhina, Vitaly Tarasovab, Alexander Varchenkoc

a Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
b St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

Аннотация: Let $M$ be the tensor product of finite-dimensional polynomial evaluation $Y(\mathfrak{gl}_N)$-modules. Consider the universal difference operator $\mathfrak D=\sum\limits_{k=0}^N (-1)^k\mathfrak T_k(u) e^{-k\partial _u }$ whose coefficients $\mathfrak T_k(u)\colon M\to M$ are the XXX transfer matrices associated with $M$. We show that the difference equation $\mathfrak D f=0$ for an $M$-valued function $f$ has a basis of solutions consisting of quasi-exponentials. We prove the same for the universal differential operator $D=\sum\limits_{k=0}^N (-1)^k\mathcal S_k(u)\partial_u^{N-k}$ whose coefficients $\mathcal S_k(u)\colon\mathcal M\to\mathcal M$ are the Gaudin transfer matrices associated with the tensor product $\mathcal M$ of finite-dimensional polynomial evaluation $\mathfrak{gl}_N[x]$-modules.

Ключевые слова: Gaudin model; XXX model; universal differential operator.

MSC: 34M35; 82B23; 17B67

Поступила: 28 марта 2007 г.; опубликована 25 апреля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.060



Реферативные базы данных:
ArXiv: math.QA/0703893


© МИАН, 2024