Эта публикация цитируется в
2 статьях
De Finetti Theorems for the Unitary Dual Group
Isabelle Baraquina,
Guillaume Cébronb,
Uwe Franza,
Laura Maassenc,
Moritz Weberd a Laboratoire de mathématiques de Besançon, UMR 6623, CNRS, Université Bourgogne Franche-Comté, 16 route de Gray, F-25000 Besançon, France
b Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
c RWTH Aachen University, Pontdriesch 10–16, 52062 Aachen, Germany
d Saarland University, Fachbereich Mathematik, Postfach 151150,
D-66041 Saarbrücken, Germany
Аннотация:
We prove several de Finetti theorems for the unitary dual group, also called the Brown algebra. Firstly, we provide a finite de Finetti theorem characterizing
$R$-diagonal elements with an identical distribution. This is surprising, since it applies to finite sequences in contrast to the de Finetti theorems for classical and quantum groups; also, it does not involve any known independence notion. Secondly, considering infinite sequences in
$W^*$-probability spaces, our characterization boils down to operator-valued free centered circular elements, as in the case of the unitary quantum group
$U_n^+$. Thirdly, the above de Finetti theorems build on dual group actions, the natural action when viewing the Brown algebra as a dual group. However, we may also equip the Brown algebra with a bialgebra action, which is closer to the quantum group setting in a way. But then, we obtain a no-go de Finetti theorem: invariance under the bialgebra action of the Brown algebra yields zero sequences, in
$W^*$-probability spaces. On the other hand, if we drop the assumption of faithful states in
$W^*$-probability spaces, we obtain a non-trivial half a de Finetti theorem similar to the case of the dual group action.
Ключевые слова:
de Finetti theorem, distributional invariance, exchangeable, Brown algebra, unitary dual group, $R$-diagonal elements, free circular elements.
MSC: 46L54,
46L65,
60G09 Поступила: 25 марта 2022 г.; в окончательном варианте
31 августа 2022 г.; опубликована
13 сентября 2022 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2022.067