Universal Structures in $\mathbb C$-Linear Enumerative Invariant Theories
Jacob Grossa,
Dominic Joycea,
Yuuji Tanakab a The Mathematical Institute, Radcliffe Observatory Quarter,
Woodstock Road, Oxford, OX2 6GG, UK
b Department of Mathematics, Faculty of Science, Kyoto University,
Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
Аннотация:
An
enumerative invariant theory in algebraic geometry, differential geometry, or representation theory, is the study of invariants which ‘count’
$\tau$-(semi)stable objects
$E$ with fixed topological invariants
$[\![E]\!]=\alpha$ in some geometric problem, by means of a
virtual class $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ in some homology theory for the moduli spaces $\mathcal{M}_\alpha^{{\rm st}}(\tau)\subseteq\mathcal{M}_\alpha^{{\rm ss}}(\tau)$ of
$\tau$-(semi)stable objects. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson–Thomas type invariants counting coherent sheaves on Calabi–Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds. We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces
$\mathcal{M}$,
$\mathcal{M}^{{\rm pl}}$, where the second author (see
https://people.maths.ox.ac.uk/~joyce/hall.pdf) gives
$H_*(\mathcal{M})$ the structure of a
graded vertex algebra, and
$H_*\big(\mathcal{M}^{{\rm pl}}\big)$ a
graded Lie algebra, closely related to
$H_*(\mathcal{M})$. The virtual classes $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ take values in
$H_*\big(\mathcal{M}^{{\rm pl}}\big)$. In most such theories, defining $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when $\mathcal{M}_\alpha^{{\rm st}}(\tau)\ne\mathcal{M}_\alpha^{{\rm ss}}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define invariants $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{\mathrm{inv}}$ in homology over
$\mathbb{Q}$, with $[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{\mathrm{inv}}=[\mathcal{M}_\alpha^{{\rm ss}}(\tau)]_{{\rm virt}}$ when $\mathcal{M}_\alpha^{{\rm st}}(\tau)=\mathcal{M}_\alpha^{{\rm ss}}(\tau)$, and that these invariants satisfy a universal wall-crossing formula under change of stability condition
$\tau$, written using the Lie bracket on
$H_*\big(\mathcal{M}^{{\rm pl}}\big)$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles. Versions of our conjectures in algebraic geometry using Behrend–Fantechi virtual classes are proved in the sequel [
arXiv:2111.04694].
Ключевые слова:
invariant, stability condition, vertex algebra, wall crossing formula, quiver.
MSC: 14D20,
17B69,
16G20 Поступила: 22 ноября 2021 г.; в окончательном варианте
6 сентября 2022 г.; опубликована
23 сентября 2022 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2022.068