RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 072, 36 стр. (Mi sigma1868)

Quadratic Relations of the Deformed $W$-Algebra for the Twisted Affine Lie Algebra of Type $A_{2N}^{(2)}$

Takeo Kojima

Department of Mathematics and Physics, Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan

Аннотация: We revisit the free field construction of the deformed $W$-algebra by Frenkel and Reshetikhin [Comm. Math. Phys. 197 (1998), 1–32], where the basic $W$-current has been identified. Herein, we establish a free field construction of higher $W$-currents of the deformed $W$-algebra associated with the twisted affine Lie algebra $A_{2N}^{(2)}$. We obtain a closed set of quadratic relations and duality, which allows us to define deformed $W$-algebra ${\mathcal W}_{x,r}\big(A_{2N}^{(2)}\big)$ using generators and relations.

Ключевые слова: deformed $W$-algebra, twisted affine algebra, quadratic relation, free field construction, exactly solvable model.

MSC: 81R10, 81R12, 81R50, 81T40, 81U15

Поступила: 15 декабря 2021 г.; в окончательном варианте 9 сентября 2022 г.; опубликована 4 октября 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.072



Реферативные базы данных:
ArXiv: 2108.13883


© МИАН, 2024