RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 061, 50 стр. (Mi sigma187)

Эта публикация цитируется в 11 статьях

Completely Integrable Systems Associated with Classical Root Systems

Toshio Oshima

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan

Аннотация: We study integrals of completely integrable quantum systems associated with classical root systems. We review integrals of the systems invariant under the corresponding Weyl group and as their limits we construct enough integrals of the non-invariant systems, which include systems whose complete integrability will be first established in this paper. We also present a conjecture claiming that the quantum systems with enough integrals given in this note coincide with the systems that have the integrals with constant principal symbols corresponding to the homogeneous generators of the $B_n$-invariants. We review conditions supporting the conjecture and give a new condition assuring it.

Ключевые слова: completely integrable systems; Calogero–Moser systems; Toda lattices with boundary conditions.

MSC: 81R12; 70H06

Поступила: 14 декабря 2006 г.; в окончательном варианте 19 марта 2007 г.; опубликована 25 апреля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.061



Реферативные базы данных:
ArXiv: math-ph/0502028


© МИАН, 2024