Аннотация:
For each affine Kac–Moody algebra $X_n^{(r)}$ of rank $\ell$, $r=1,2$, or $3$, and for every choice of a vertex $c_m$, $m=0,\dots,\ell$, of the corresponding Dynkin diagram, by using the matrix-resolvent method we define a gauge-invariant tau-structure for the associated Drinfeld–Sokolov hierarchy and give explicit formulas for generating series of logarithmic derivatives of the tau-function in terms of matrix resolvents, extending the results of [Mosc. Math. J.21 (2021), 233–270, arXiv:1610.07534] with $r=1$ and $m=0$. For the case $r=1$ and $m=0$, we verify that the above-defined tau-structure agrees with the axioms of Hamiltonian tau-symmetry in the sense of [Adv. Math.293 (2016), 382–435, arXiv:1409.4616] and [arXiv:math.DG/0108160].