RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 079, 21 стр. (Mi sigma1875)

Эта публикация цитируется в 1 статье

Noncolliding Macdonald Walks with an Absorbing Wall

Leonid Petrov

University of Virginia, Charlottesville, VA, USA

Аннотация: The branching rule is one of the most fundamental properties of the Macdonald symmetric polynomials. It expresses a Macdonald polynomial as a nonnegative linear combination of Macdonald polynomials with smaller number of variables. Taking a limit of the branching rule under the principal specialization when the number of variables goes to infinity, we obtain a Markov chain of $m$ noncolliding particles with negative drift and an absorbing wall at zero. The chain depends on the Macdonald parameters $(q,t)$ and may be viewed as a discrete deformation of the Dyson Brownian motion. The trajectory of the Markov chain is equivalent to a certain Gibbs ensemble of plane partitions with an arbitrary cascade front wall. In the Jack limit $t=q^{\beta/2}\to1$ the absorbing wall disappears, and the Macdonald noncolliding walks turn into the $\beta$-noncolliding random walks studied by Huang [Int. Math. Res. Not. 2021 (2021), 5898–5942, arXiv:1708.07115]. Taking $q=0$ (Hall–Littlewood degeneration) and further sending $t\to 1$, we obtain a continuous time particle system on $\mathbb{Z}_{\ge0}$ with inhomogeneous jump rates and absorbing wall at zero.

Ключевые слова: Macdonald polynomials, branching rule, noncolliding random walks, lozenge tilings.

MSC: 06C05, 05E05, 05A30

Поступила: 7 июня 2022 г.; в окончательном варианте 16 октября 2022 г.; опубликована 20 октября 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.079



Реферативные базы данных:
ArXiv: 2204.09206


© МИАН, 2025