Эта публикация цитируется в
1 статье
Difference Operators and Duality for Trigonometric Gaudin and Dynamical Hamiltonians
Filipp Uvarov Higher School of Economics, 6 Usacheva Str., Moscow, 119048, Russia
Аннотация:
We study the difference analog of the quotient differential operator from [Tarasov V., Uvarov F.,
Lett. Math. Phys. 110 (2020), 3375–3400, arXiv:
1907.02117]. Starting with a space of quasi-exponentials $W=\langle \alpha_{i}^{x}p_{ij}(x),\, i=1,\ldots, n,\, j=1,\ldots, n_{i}\rangle$, where
$\alpha_{i}\in\mathbb{C}^{*}$ and
$p_{ij}(x)$ are polynomials, we consider the formal conjugate
$\check{S}^{\dagger}_{W}$ of the quotient difference operator
$\check{S}_{W}$ satisfying
$\widehat{S} =\check{S}_{W}S_{W}$. Here,
$S_{W}$ is a linear difference operator of order
$\dim W$ annihilating
$W$, and
$\widehat{S}$ is a linear difference operator with constant coefficients depending on
$\alpha_{i}$ and
$\deg p_{ij}(x)$ only. We construct a space of quasi-exponentials of dimension
$\mathrm{ord}\, \check{S}^{\dagger}_{W}$, which is annihilated by
$\check{S}^{\dagger}_{W}$ and describe its basis and discrete exponents. We also consider a similar construction for differential operators associated with spaces of quasi-polynomials, which are linear combinations of functions of the form
$x^{z}q(x)$, where
$z\in\mathbb C$ and
$q(x)$ is a polynomial. Combining our results with the results on the bispectral duality obtained in [Mukhin E., Tarasov V., Varchenko A.,
Adv. Math. 218 (2008), 216–265, arXiv:
math.QA/0605172], we relate the construction of the quotient difference operator to the
$(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality of the trigonometric Gaudin Hamiltonians and trigonometric dynamical Hamiltonians acting on the space of polynomials in
$kn$ anticommuting variables.
Ключевые слова:
difference operator, $(\mathfrak{gl}_{k},\mathfrak{gl}_{n})$-duality, trigonometric Gaudin model, Bethe ansatz.
MSC: 82B23,
17B80,
39A05,
34M35 Поступила: 28 февраля 2022 г.; в окончательном варианте
26 сентября 2022 г.; опубликована
25 октября 2022 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2022.081