RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 063, 15 стр. (Mi sigma189)

Эта публикация цитируется в 50 статьях

The Relationship between Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case

Tom H. Koornwinder

Korteweg--de Vries Institute, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Аннотация: Zhedanov's algebra $AW(3)$ is considered with explicit structure constants such that, in the basic representation, the first generator becomes the second order $q$-difference operator for the Askey–Wilson polynomials. It is proved that this representation is faithful for a certain quotient of $AW(3)$ such that the Casimir operator is equal to a special constant. Some explicit aspects of the double affine Hecke algebra (DAHA) related to symmetric and non-symmetric Askey–Wilson polynomials are presented and proved without requiring knowledge of general DAHA theory. Finally a central extension of this quotient of $AW(3)$ is introduced which can be embedded in the DAHA by means of the faithful basic representations of both algebras.

Ключевые слова: Zhedanov's algebra $AW(3)$; double affine Hecke algebra in rank one; Askey–Wilson polynomials; non-symmetric Askey–Wilson polynomials.

MSC: 33D80; 33D45

Поступила: 22 декабря 2006 г.; в окончательном варианте 23 апреля 2007 г.; опубликована 27 апреля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.063



Реферативные базы данных:
ArXiv: math.QA/0612730


© МИАН, 2024