RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 098, 39 стр. (Mi sigma1894)

Эта публикация цитируется в 1 статье

Complementary Modules of Weierstrass Canonical Forms

Jiryo Komedaa, Shigeki Matsutanib, Emma Previatoc

a Department of Mathematics, Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
b Faculty of Electrical, Information and Communication Engineering, Kanazawa University, Kakuma Kanazawa, 920-1192, Japan
c Department of Mathematics and Statistics, Boston University, Boston, MA 02215-2411, USA

Аннотация: The Weierstrass curve is a pointed curve $(X,\infty)$ with a numerical semigroup $H_X$, which is a normalization of the curve given by the Weierstrass canonical form, $y^r + A_{1}(x) y^{r-1} + A_{2}(x) y^{r-2} +\dots + A_{r-1}(x) y + A_{r}(x)=0$ where each $A_j$ is a polynomial in $x$ of degree $\leq j s/r$ for certain coprime positive integers $r$ and $s$, $r<s$, such that the generators of the Weierstrass non-gap sequence $H_X$ at $\infty$ include $r$ and $s$. The Weierstrass curve has the projection $\varpi_r\colon X \to {\mathbb P}$, $(x,y)\mapsto x$, as a covering space. Let $R_X := {\mathbf H}^0(X, {\mathcal O}_X(*\infty))$ and $R_{\mathbb P} := {\mathbf H}^0({\mathbb P}, {\mathcal O}_{\mathbb P}(*\infty))$ whose affine part is ${\mathbb C}[x]$. In this paper, for every Weierstrass curve $X$, we show the explicit expression of the complementary module $R_X^{\mathfrak c}$ of $R_{\mathbb P}$-module $R_X$ as an extension of the expression of the plane Weierstrass curves by Kunz. The extension naturally leads the explicit expressions of the holomorphic one form except $\infty$, ${\mathbf H}^0({\mathbb P}, {\mathcal A}_{\mathbb P}(*\infty))$ in terms of $R_X$. Since for every compact Riemann surface, we find a Weierstrass curve that is bi-rational to the surface, we also comment that the explicit expression of $R_X^{\mathfrak c}$ naturally leads the algebraic construction of generalized Weierstrass' sigma functions for every compact Riemann surface and is also connected with the data on how the Riemann surface is embedded into the universal Grassmannian manifolds.

Ключевые слова: Weierstrass canonical form, complementary modules, plane and space curves with higher genera, sigma function.

MSC: 14H55, 14H50, 16S36, 13H10

Поступила: 12 июля 2022 г.; в окончательном варианте 7 декабря 2022 г.; опубликована 18 декабря 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.098



Реферативные базы данных:
ArXiv: 2207.01905


© МИАН, 2024