RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 002, 12 стр. (Mi sigma1897)

Эта публикация цитируется в 1 статье

A Cable Knot and BPS-Series

John Chae

Department of Mathematics, Univeristy of California Davis, Davis, USA

Аннотация: A series invariant of a complement of a knot was introduced recently. The invariant for several prime knots up to ten crossings have been explicitly computed. We present the first example of a satellite knot, namely, a cable of the figure eight knot, which has more than ten crossings. This cable knot result provides nontrivial evidence for the conjectures for the series invariant and demonstrates the robustness of integrality of the quantum invariant under the cabling operation. Furthermore, we observe a relation between the series invariant of the cable knot and the series invariant of the figure eight knot. This relation provides an alternative simple method of finding the former series invariant.

Ключевые слова: knot complement, quantum invariant, $q$-series, Chern–Simons theory, categorification.

MSC: 57K10, 57K16, 57K31, 81R50

Поступила: 3 августа 2022 г.; в окончательном варианте 5 января 2023 г.; опубликована 13 января 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.002



Реферативные базы данных:
ArXiv: 2101.11708


© МИАН, 2024