RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 008, 35 стр. (Mi sigma1903)

Эта публикация цитируется в 3 статьях

An Askey–Wilson Algebra of Rank $2$

Wolter Groenevelt, Carel Wagenaar

Delft Institute of Applied Mathematics, Technische Universiteit Delft, PO Box 5031, 2600 GA Delft, The Netherlands

Аннотация: An algebra is introduced which can be considered as a rank $2$ extension of the Askey–Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{C}))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.

Ключевые слова: Askey–Wilson algebra, $q$-Racah polynomials.

MSC: 20G42, 33D80

Поступила: 30 июня 2022 г.; в окончательном варианте 15 февраля 2023 г.; опубликована 5 марта 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.008



Реферативные базы данных:
ArXiv: 2206.03986


© МИАН, 2024