Refined and Generalized $\hat{Z}$ Invariants for Plumbed $3$-Manifolds
Song Jin Riab a SISSA, Via Bonomea 265, Trieste 34136, Italy
b ICTP, Strada Costiera 11, Trieste 34151, Italy
Аннотация:
We introduce a two-variable refinement
$\hat{Z}_a(q,t)$ of plumbed
$3$-manifold invariants
$\hat{Z}_a(q)$, which were previously defined for weakly negative definite plumbed
$3$-manifolds. We also provide a number of explicit examples in which we argue the recovering process to obtain
$\hat{Z}_a(q)$ from
$\hat{Z}_a(q,t)$ by taking a limit
$ t\rightarrow 1 $. For plumbed
$3$-manifolds with two high-valency vertices, we analytically compute the limit by using the explicit integer solutions of quadratic Diophantine equations in two variables. Based on numerical computations of the recovered
$\hat{Z}_a(q)$ for plumbings with two high-valency vertices, we propose a conjecture that the recovered
$\hat{Z}_a(q)$, if exists, is an invariant for all tree plumbed
$3$-manifolds. Finally, we provide a formula of the
$\hat{Z}_a(q,t)$ for the connected sum of plumbed
$3$-manifolds in terms of those for the components.
Ключевые слова:
$q$-series, $\hat{Z}$ invariants, plumbed $3$-manifolds.
MSC: 57K31,
57R56,
11D09 Поступила: 5 сентября 2022 г.; в окончательном варианте
28 февраля 2023 г.; опубликована
19 марта 2023 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2023.011