RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 026, 36 стр. (Mi sigma1921)

On Generalized WKB Expansion of Monodromy Generating Function

Roman Klimov

Department of Mathematics and Statistics, Concordia University,1455 de Maisonneuve W., Montreal, QC H3G 1M8, Canada

Аннотация: We study symplectic properties of the monodromy map of the Schrödinger equation on a Riemann surface with a meromorphic potential having second-order poles. At first, we discuss the conditions for the base projective connection, which induces its own set of Darboux homological coordinates, to imply the Goldman Poisson structure on the character variety. Using this result, we extend the paper [Theoret. and Math. Phys. 206 (2021), 258–295, arXiv:1910.07140], by performing generalized WKB expansion of the generating function of monodromy symplectomorphism (the Yang–Yang function) and computing its first three terms.

Ключевые слова: WKB expansion, moduli spaces, tau-functions.

MSC: 53D30, 34M45, 34E20

Поступила: 22 июня 2022 г.; в окончательном варианте 11 апреля 2023 г.; опубликована 28 апреля 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.026



Реферативные базы данных:
ArXiv: 2206.10578


© МИАН, 2024