Аннотация:
We study a particular group law on formal power series in non-commuting variables induced by their interpretation as linear forms on a suitable graded connected word Hopf algebra. This group law is left-linear and is therefore associated to a pre-Lie structure on formal power series. We study these structures and show how they can be used to recast in a group theoretic form various identities and transformations on formal power series that have been central in the context of non-commutative probability theory, in particular in Voiculescu's theory of free probability.
Ключевые слова:non-commutative probability theory, non-commutative power series, moments and cumulants, combinatorial Hopf algebra, pre-Lie algebra.