RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 038, 17 стр. (Mi sigma1933)

Эта публикация цитируется в 1 статье

Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability

Kurusch Ebrahimi-Farda, Frédéric Patrasb, Nikolas Tapiacd, Lorenzo Zambottie

a Department of Mathematical Sciences, Norwegian University of Science and Technology, NO 7491 Trondheim, Norway
b Université Côte d'Azur, CNRS, UMR 7351, Parc Valrose, 06108 Nice Cedex 02, France
c Weierstraß-Institut Berlin, Berlin, Germany
d Technische Universität Berlin, Berlin, Germany
e LPSM, Sorbonne Université, CNRS, Université Paris Cité, 4 Place Jussieu, 75005 Paris, France

Аннотация: We study a particular group law on formal power series in non-commuting variables induced by their interpretation as linear forms on a suitable graded connected word Hopf algebra. This group law is left-linear and is therefore associated to a pre-Lie structure on formal power series. We study these structures and show how they can be used to recast in a group theoretic form various identities and transformations on formal power series that have been central in the context of non-commutative probability theory, in particular in Voiculescu's theory of free probability.

Ключевые слова: non-commutative probability theory, non-commutative power series, moments and cumulants, combinatorial Hopf algebra, pre-Lie algebra.

MSC: 16T05, 16T10, 16T30, 17A30, 46L53, 46L54

Поступила: 5 апреля 2022 г.; в окончательном варианте 29 мая 2023 г.; опубликована 8 июня 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.038


ArXiv: 2204.01445


© МИАН, 2024