RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 068, 12 стр. (Mi sigma194)

Эта публикация цитируется в 2 статьях

Hidden Symmetries of Stochastic Models

Boyka Aneva

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria

Аннотация: In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n)$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n)$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey–Wilson polynomials. The Askey–Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

Ключевые слова: stohastic models; tridiagonal algebra; Askey–Wilson polynomials.

MSC: 60J60; 17B80

Поступила: 23 ноября 2006 г.; в окончательном варианте 4 мая 2007 г.; опубликована 18 мая 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.068



Реферативные базы данных:
ArXiv: 0705.2671


© МИАН, 2024