RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 047, 141 стр. (Mi sigma1942)

Эта публикация цитируется в 5 статьях

Seiberg–Witten Geometry of Four-Dimensional $\mathcal N=2$ Quiver Gauge Theories

Nikita Nekrasova, Vasily Pestunb

a Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY 11794-3636, USA
b Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

Аннотация: Seiberg–Witten geometry of mass deformed $\mathcal{N}=2$ superconformal ADE quiver gauge theories in four dimensions is determined. We solve the limit shape equations derived from the gauge theory and identify the space $\mathfrak{M}$ of vacua of the theory with the moduli space of the genus zero holomorphic (quasi)maps to the moduli space $\mathrm{Bun}_{\mathbf{G}}(\mathcal{E})$ of holomorphic $G^{\mathbb{C}}$-bundles on a (possibly degenerate) elliptic curve $\mathcal{E}$ defined in terms of the microscopic gauge couplings, for the corresponding simple ADE Lie group $G$. The integrable systems $\mathfrak{B}$ underlying the special geometry of $\mathfrak{M}$ are identified. The moduli spaces of framed $G$-instantons on $\mathbb{R}^2 \times \mathbb{T}^2$, of $G$-monopoles with singularities on $\mathbb{R}^2 \times \mathbb{S}^1$, the Hitchin systems on curves with punctures, as well as various spin chains play an important rôle in our story. We also comment on the higher-dimensional theories.

Ключевые слова: low-energy theory, instantons, monopoles, integrability.

MSC: 81T12, 81T13, 81T70

Поступила: 19 декабря 2022 г.; в окончательном варианте 20 июня 2023 г.; опубликована 16 июля 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.047


ArXiv: 1211.2240


© МИАН, 2024