Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups
Ryosuke Nakahamaab a NTT Institute for Fundamental Mathematics, NTT Communication Science Laboratories,
Nippon Telegraph and Telephone Corporation,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
b Institute of Mathematics for Industry, Kyushu University,
744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
Аннотация:
Let
$(G,G_1)=(G,(G^\sigma)_0)$ be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces
$D_1=G_1/K_1\subset D=G/K$, realized as bounded symmetric domains in complex vector spaces $\mathfrak{p}^+_1:=(\mathfrak{p}^+)^\sigma\subset\mathfrak{p}^+$ respectively. Then the universal covering group
$\widetilde{G}$ of
$G$ acts unitarily on the weighted Bergman space $\mathcal{H}_\lambda(D)\subset\mathcal{O}(D)=\mathcal{O}_\lambda(D)$ on
$D$ for sufficiently large
$\lambda$. Its restriction to the subgroup
$\widetilde{G}_1$ decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the
$\widetilde{K}_1$-decomposition of the space
$\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$ of polynomials on $\mathfrak{p}^+_2:=(\mathfrak{p}^+)^{-\sigma}\subset\mathfrak{p}^+$. The object of this article is to understand the decomposition of the restriction
$\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}$ by studying the weighted Bergman inner product on each
$\widetilde{K}_1$-type in $\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)\subset\mathcal{H}_\lambda(D)$. For example, by computing explicitly the norm
$\Vert f\Vert_\lambda$ for
$f=f(x_2)\in\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$, we can determine the Parseval–Plancherel-type formula for the decomposition of
$\mathcal{H}_\lambda(D)|_{\widetilde{G}_1}$. Also, by computing the poles of
$\bigl\langle f(x_2),{\rm e}^{(x|\overline{z})_{\mathfrak{p}^+}}\bigr\rangle_{\lambda,x}$
for $f(x_2)\in\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$,
$x=(x_1,x_2)$,
$z\in\mathfrak{p}^+=\mathfrak{p}^+_1\oplus\mathfrak{p}^+_2$,
we can get some information on branching of
$\mathcal{O}_\lambda(D)|_{\widetilde{G}_1}$ also for
$\lambda$ in non-unitary range. In this article we consider these problems for all
$\widetilde{K}_1$-types in
$\mathcal{P}\bigl(\mathfrak{p}^+_2\bigr)$.
Ключевые слова:
weighted Bergman spaces, holomorphic discrete series representations, branching laws, Parseval–Plancherel-type formulas, highest weight modules.
MSC: 22E45,
43A8,
17C30 Поступила: 21 сентября 2022 г.; в окончательном варианте
26 июня 2023 г.; опубликована
21 июля 2023 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2023.049