Spectral Theory of the Nazarov–Sklyanin Lax Operator
Ryan Micklera,
Alexander Mollb a Singulariti Research, Melbourne, Victoria, Australia
b Department of Mathematics and Statistics, Reed College, Portland, Oregon, USA
Аннотация:
In their study of Jack polynomials, Nazarov–Sklyanin introduced a remarkable new graded linear operator
$\mathcal{L}\colon F[w] \rightarrow F[w]$ where
$F$ is the ring of symmetric functions and
$w$ is a variable. In this paper, we (1) establish a cyclic decomposition $F[w] \cong \bigoplus_{\lambda} Z(j_{\lambda}, \mathcal{L})$ into finite-dimensional
$\mathcal{L}$-cyclic subspaces in which Jack polynomials
$j_{\lambda}$ may be taken as cyclic vectors and (2) prove that the restriction of
$\mathcal{L}$ to each
$Z(j_{\lambda}, \mathcal{L})$ has simple spectrum given by the anisotropic contents
$[s]$ of the addable corners
$s$ of the Young diagram of
$\lambda$. Our proofs of (1) and (2) rely on the commutativity and spectral theorem for the integrable hierarchy associated to
$\mathcal{L}$, both established by Nazarov–Sklyanin. Finally, we {conjecture that} the
$\mathcal{L}$-eigenfunctions
$\psi_{\lambda}^s {\in F[w]}$ {with eigenvalue
$[s]$ and constant term}
$\psi_{\lambda}^s|_{w=0} = j_{\lambda}$ are polynomials in the rescaled power sum basis
$V_{\mu} w^l$ of
$F[w]$ with integer coefficients.
Ключевые слова:
Jack symmetric functions, Lax operators, anisotropic Young diagrams.
MSC: 05E05,
33D52,
37K10,
47B35 Поступила: 19 марта 2023 г.; в окончательном варианте
27 августа 2023 г.; опубликована
10 сентября 2023 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2023.063