RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 076, 43 стр. (Mi sigma1971)

Эта публикация цитируется в 1 статье

Tensors and Algebras: An Algebraic Spacetime Interpretation for Tensor Models

Dennis Obster

Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

Аннотация: The quest for a consistent theory for quantum gravity is one of the most challenging problems in theoretical high-energy physics. An often-used approach is to describe the gravitational degrees of freedom by the metric tensor or related variables, and finding a way to quantise this. In the canonical tensor model, the gravitational degrees of freedom are encoded in a tensorial quantity $P_{abc}$, and this quantity is subsequently quantised. This makes the quantisation much more straightforward mathematically, but the interpretation of this tensor as a spacetime is less evident. In this work we take a first step towards fully understanding the relationship to spacetime. By considering $P_{abc}$ as the generator of an algebra of functions, we first describe how we can recover the topology and the measure of a compact Riemannian manifold. Using the tensor rank decomposition, we then generalise this principle in order to have a well-defined notion of the topology and geometry for a large class of tensors $P_{abc}$. We provide some examples of the emergence of a topology and measure of both exact and perturbed Riemannian manifolds, and of a purely algebraically-defined space called the semi-local circle.

Ключевые слова: algebraic tensor model, quantum gravity, canonical tensor model, interpretation.

MSC: 83C45, 46C05, 16S15

Поступила: 24 апреля 2022 г.; в окончательном варианте 30 сентября 2023 г.; опубликована 18 октября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.076


ArXiv: 2203.03633


© МИАН, 2024