Эта публикация цитируется в
1 статье
The Higher-Rank Askey–Wilson Algebra and Its Braid Group Automorphisms
Nicolas Crampéa,
Luc Frappatb,
Loïc Poulain d'Andecyc,
Eric Ragoucyb a Institut Denis-Poisson CNRS/UMR 7013 - Université de Tours - Université d'Orléans, Parc de Grandmont, 37200 Tours, France
b Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTh, Université Savoie Mont Blanc, CNRS, F-74000 Annecy, France
c Laboratoire de mathématiques de Reims UMR 9008, Université de Reims Champagne-Ardenne, Moulin de la Housse BP 1039, 51100 Reims, France
Аннотация:
We propose a definition by generators and relations of the rank
$n-2$ Askey–Wilson algebra
$\mathfrak{aw}(n)$ for any integer
$n$, generalising the known presentation for the usual case
$n=3$. The generators are indexed by connected subsets of
$\{1,\dots,n\}$ and the simple and rather small set of defining relations is directly inspired from the known case of
$n=3$. Our first main result is to prove the existence of automorphisms of
$\mathfrak{aw}(n)$ satisfying the relations of the braid group on
$n+1$ strands. We also show the existence of coproduct maps relating the algebras for different values of
$n$. An immediate consequence of our approach is that the Askey–Wilson algebra defined here surjects onto the algebra generated by the intermediate Casimir elements in the
$n$-fold tensor product of the quantum group
${\rm U}_q(\mathfrak{sl}_2)$ or, equivalently, onto the Kauffman bracket skein algebra of the
$(n+1)$-punctured sphere. We also obtain a family of central elements of the Askey–Wilson algebras which are shown, as a direct by-product of our construction, to be sent to
$0$ in the realisation in the
$n$-fold tensor product of
${\rm U}_q(\mathfrak{sl}_2)$, thereby producing a large number of relations for the algebra generated by the intermediate Casimir elements.
Ключевые слова:
Askey–Wilson algebra, braid group.
MSC: 16T10,
33D45,
81R12 Поступила: 12 апреля 2023 г.; в окончательном варианте
10 октября 2023 г.; опубликована
18 октября 2023 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2023.077