RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 077, 36 стр. (Mi sigma1972)

Эта публикация цитируется в 1 статье

The Higher-Rank Askey–Wilson Algebra and Its Braid Group Automorphisms

Nicolas Crampéa, Luc Frappatb, Loïc Poulain d'Andecyc, Eric Ragoucyb

a Institut Denis-Poisson CNRS/UMR 7013 - Université de Tours - Université d'Orléans, Parc de Grandmont, 37200 Tours, France
b Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTh, Université Savoie Mont Blanc, CNRS, F-74000 Annecy, France
c Laboratoire de mathématiques de Reims UMR 9008, Université de Reims Champagne-Ardenne, Moulin de la Housse BP 1039, 51100 Reims, France

Аннотация: We propose a definition by generators and relations of the rank $n-2$ Askey–Wilson algebra $\mathfrak{aw}(n)$ for any integer $n$, generalising the known presentation for the usual case $n=3$. The generators are indexed by connected subsets of $\{1,\dots,n\}$ and the simple and rather small set of defining relations is directly inspired from the known case of $n=3$. Our first main result is to prove the existence of automorphisms of $\mathfrak{aw}(n)$ satisfying the relations of the braid group on $n+1$ strands. We also show the existence of coproduct maps relating the algebras for different values of $n$. An immediate consequence of our approach is that the Askey–Wilson algebra defined here surjects onto the algebra generated by the intermediate Casimir elements in the $n$-fold tensor product of the quantum group ${\rm U}_q(\mathfrak{sl}_2)$ or, equivalently, onto the Kauffman bracket skein algebra of the $(n+1)$-punctured sphere. We also obtain a family of central elements of the Askey–Wilson algebras which are shown, as a direct by-product of our construction, to be sent to $0$ in the realisation in the $n$-fold tensor product of ${\rm U}_q(\mathfrak{sl}_2)$, thereby producing a large number of relations for the algebra generated by the intermediate Casimir elements.

Ключевые слова: Askey–Wilson algebra, braid group.

MSC: 16T10, 33D45, 81R12

Поступила: 12 апреля 2023 г.; в окончательном варианте 10 октября 2023 г.; опубликована 18 октября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.077


ArXiv: 2303.17677


© МИАН, 2024