RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 080, 20 стр. (Mi sigma1975)

Эта публикация цитируется в 1 статье

A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation

Peter A. Clarksona, Chun-Kong Lawb, Chia-Hua Linb

a School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK
b Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Taiwan

Аннотация: We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii–Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.

Ключевые слова: Umemura polynomials; third Painlevé equation; recurrence relation.

MSC: 33E17, 34M55, 65Q30

Поступила: 29 июня 2023 г.; в окончательном варианте 17 октября 2023 г.; опубликована 25 октября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.080


ArXiv: 1609.00495


© МИАН, 2024