RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 082, 39 стр. (Mi sigma1977)

Эта публикация цитируется в 2 статьях

Knots and Their Related $q$-Series

Stavros Garoufalidisa, Don Zagierbc

a International Center for Mathematics, Department of Mathematics, Southern University of Science and Technology, Shenzhen, P.R. China
b International Centre for Theoretical Physics, Trieste, Italy
c Max Planck Institute for Mathematics, Bonn, Germany

Аннотация: We discuss a matrix of periodic holomorphic functions in the upper and lower half-plane which can be obtained from a factorization of an Andersen–Kashaev state integral of a knot complement with remarkable analytic and asymptotic properties that defines a ${\rm PSL}_2({\mathbb Z})$-cocycle on the space of matrix-valued piecewise analytic functions on the real numbers. We identify the corresponding cocycle with the one coming from the Kashaev invariant of a knot (and its matrix-valued extension) via the refined quantum modularity conjecture of [arXiv:2111.06645] and also relate the matrix-valued invariant with the 3D-index of Dimofte–Gaiotto–Gukov. The cocycle also has an analytic extendability property that leads to the notion of a matrix-valued holomorphic quantum modular form. This is a tale of several independent discoveries, both empirical and theoretical, all illustrated by the three simplest hyperbolic knots.

Ключевые слова: $q$-series, Nahm sums, knots, Jones polynomial, Kashaev invariant, volume conjecture, hyperbolic 3-manifolds, quantum topology, quantum modular forms, holomorphic quantum modular forms, state integrals, 3D-index, quantum dilogarithm, asymptotics, Chern–Simons theory.

MSC: 57N10, 57K16, 57K14, 57K10

Поступила: 25 апреля 2023 г.; в окончательном варианте 17 октября 2023 г.; опубликована 1 ноября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.082


ArXiv: 2304.09377


© МИАН, 2024