RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 085, 33 стр. (Mi sigma1980)

Эта публикация цитируется в 1 статье

Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers

Zhiyuan Wanga, Chenglang Yangb

a School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, P.R. China
b Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, P.R. China

Аннотация: We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\tau_f(\mathbf{t}^+,\mathbf{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\mathbf{t}^-$, we compute the KP-affine coordinates of $\tau_f(\mathbf{t}^+, \mathbf{t}^-)$. As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov–Witten invariants of $\mathbb{P}^1$ relative to two points.

Ключевые слова: 2d Toda lattice hierarchy, connected $(n,m)$-point functions, boson-fermion correspondence, double Hurwitz numbers.

MSC: 37K10, 14N10, 14N35

Поступила: 18 декабря 2022 г.; в окончательном варианте 21 октября 2023 г.; опубликована 4 ноября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.085


ArXiv: 2210.08712


© МИАН, 2025