RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 092, 21 стр. (Mi sigma1987)

Isomonodromic Deformations Along the Caustic of a Dubrovin–Frobenius Manifold

Felipe Reyes

SISSA, via Bonomea 265, Trieste, Italy

Аннотация: We study the family of ordinary differential equations associated to a Dubrovin–Frobenius manifold along its caustic. Upon just loosing an idempotent at the caustic and under a non-degeneracy condition, we write down a normal form for this family and prove that the corresponding fundamental matrix solutions are strongly isomonodromic. It is shown that the exponent of formal monodromy is related to the multiplication structure of the Dubrovin–Frobenius manifold along its caustic.

Ключевые слова: Dubrovin–Frobenius manifolds, isomonodromic deformations, differential equations.

MSC: 53D45, 34M56

Поступила: 3 мая 2023 г.; в окончательном варианте 6 ноября 2023 г.; опубликована 16 ноября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.092


ArXiv: 2209.01062


© МИАН, 2024