RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 101, 36 стр. (Mi sigma1996)

On the Total CR Twist of Transversal Curves in the $3$-Sphere

Emilio Mussoa, Lorenzo Nicolodib

a Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
b Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy

Аннотация: We investigate the total CR twist functional on transversal curves in the standard CR $3$-sphere $\mathrm S^3 \subset \mathbb C^2$. The question of the integration by quadratures of the critical curves and the problem of existence and properties of closed critical curves are addressed. A procedure for the explicit integration of general critical curves is provided and a characterization of closed curves within a specific class of general critical curves is given. Experimental evidence of the existence of infinite countably many closed critical curves is provided.

Ключевые слова: CR $3$-sphere, transversal curves, CR invariants, total CR twist, Griffiths' formalism, Lax formulation of E-L equations, integration by quadratures, closed critical curves.

MSC: 53C50, 53C42, 53A10

Поступила: 11 июля 2023 г.; в окончательном варианте 26 ноября 2023 г.; опубликована 21 декабря 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.101


ArXiv: 2307.04763


© МИАН, 2024