Эта публикация цитируется в
1 статье
Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
Alexandru Chirvasitu,
Jun Peng Department of Mathematics, University at Buffalo, Buffalo, NY 14260-2900, USA
Аннотация:
Consider a compact group
$G$ acting on a real or complex Banach Lie group
$U$, by automorphisms in the relevant category, and leaving a central subgroup
$K\le U$ invariant. We define the spaces
${}_KZ^n(G,U)$ of
$K$-relative continuous cocycles as those maps
${G^n\to U}$ whose coboundary is a
$K$-valued
$(n+1)$-cocycle; this applies to possibly non-abelian
$U$, in which case
$n=1$. We show that the
${}_KZ^n(G,U)$ are analytic submanifolds of the spaces
$C(G^n,U)$ of continuous maps
$G^n\to U$ and that they decompose as disjoint unions of fiber bundles over manifolds of
$K$-valued cocycles. Applications include: (a) the fact that
${Z^n(G,U)\subset C(G^n,U)}$ is an analytic submanifold and its orbits under the adjoint of the group of
$U$-valued
$(n-1)$-cochains are open; (b) hence the cohomology spaces
$H^n(G,U)$ are discrete; (c) for unital
$C^*$-algebras
$A$ and
$B$ with
$A$ finite-dimensional the space of morphisms
$A\to B$ is an analytic manifold and nearby morphisms are conjugate under the unitary group
$U(B)$; (d) the same goes for
$A$ and
$B$ Banach, with
$A$ finite-dimensional and semisimple; (e) and for spaces of projective representations of compact groups in arbitrary
$C^*$ algebras (the last recovering a result of Martin's).
Ключевые слова:
Banach Lie group, Lie algebra, group cohomology, cocycle, coboundary, infinite-dimensional manifold, immersion, analytic, $C^*$-algebra, unitary group, Banach algebra, semisimple, Jacobson radical.
MSC: 22E65,
17B65,
58B25,
22E41,
57N35,
46L05,
16H05,
16D60,
16K20 Поступила: 18 июня 2023 г.; в окончательном варианте
1 декабря 2023 г.; опубликована
24 декабря 2023 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2023.106