RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 017, 15 стр. (Mi sigma2019)

On Pre-Novikov Algebras and Derived Zinbiel Variety

Pavel Kolesnikova, Farukh Mashurovb, Bauyrzhan Sartayevcd

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Shenzhen International Center for Mathematics (SICM), Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
c United Arab Emirates University, Al Ain, United Arab Emirates
d Narxoz University, Almaty, Kazakhstan

Аннотация: For a non-associative algebra $A$ with a derivation $d$, its derived algebra $A^{(d)}$ is the same space equipped with new operations $a\succ b = d(a)b$, $a\prec b = ad(b)$, $a,b\in A$. Given a variety $\mathrm{Var} $ of algebras, its derived variety is generated by all derived algebras $A^{(d)}$ for all $A$ in $\mathrm{Var}$ and for all derivations $d$ of $A$. The same terminology is applied to binary operads governing varieties of non-associative algebras. For example, the operad of Novikov algebras is the derived one for the operad of (associative) commutative algebras. We state a sufficient condition for every algebra from a derived variety to be embeddable into an appropriate differential algebra of the corresponding variety. We also find that for $\mathrm{Var} = \mathrm{Zinb}$, the variety of Zinbiel algebras, there exist algebras from the derived variety (which coincides with the class of pre-Novikov algebras) that cannot be embedded into a Zinbiel algebra with a derivation.

Ключевые слова: Novikov algebra, derivation, dendriform algebra, Zinbiel algebra.

MSC: 17A36, 17A30, 18M60

Поступила: 31 августа 2023 г.; в окончательном варианте 5 февраля 2024 г.; опубликована 28 февраля 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.017


ArXiv: 2305.07371


© МИАН, 2024