RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 076, 22 стр. (Mi sigma202)

Эта публикация цитируется в 17 статьях

$\mathrm{SU}_2$ Nonstandard Bases: Case of Mutually Unbiased Bases

Olivier Albouyabc, Maurice R. Kiblerabc

a Université Lyon 1
b CNRS/IN2P3, 43 bd du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
c Université de Lyon, Institut de Physique Nucléaire

Аннотация: This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of $\mathrm{SU}_2$ corresponding to an irreducible representation of $\mathrm{SU}_2$. The representation theory of $\mathrm{SU}_2$ is reconsidered via the use of two truncated deformed oscillators. This leads to replacement of the familiar scheme $\{j^2, j_z\}$ by a scheme $\{j^2,v_{ra} \}$, where the two-parameter operator $v_{ra}$ is defined in the universal enveloping algebra of the Lie algebra $\mathrm{su}_2$. The eigenvectors of the commuting set of operators $\{j^2,v_{ra}\}$ are adapted to a tower of chains $\mathrm{SO}_3\supset C_{2j+1}$ ($2j\in\mathbb N^{\ast}$), where $C_{2j+1}$ is the cyclic group of order $2j+1$. In the case where $2j+1$ is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.

Ключевые слова: symmetry adapted bases; truncated deformed oscillators; angular momentum; polar decomposition of su2; finite quantum mechanics; cyclic systems; mutually unbiased bases; Gauss sums.

MSC: 81R50; 81R05; 81R10; 81R15

Поступила: 7 апреля 2007 г.; в окончательном варианте 16 июня 2007 г.; опубликована 8 июля 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.076



Реферативные базы данных:
ArXiv: quant-ph/0701230


© МИАН, 2024