RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 025, 19 стр. (Mi sigma2027)

Compatible $E$-Differential Forms on Lie Algebroids over (Pre-)Multisymplectic Manifolds

Noriaki Ikeda

Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

Аннотация: We consider higher generalizations of both a (twisted) Poisson structure and the equivariant condition of a momentum map on a symplectic manifold. On a Lie algebroid over a (pre-)symplectic and (pre-)multisymplectic manifold, we introduce a Lie algebroid differential form called a compatible $E$-$n$-form. This differential form satisfies a compatibility condition, which is consistent with both the Lie algebroid structure and the (pre-)(multi)symplectic structure. There are many interesting examples such as a Poisson structure, a twisted Poisson structure and a twisted $R$-Poisson structure for a pre-$n$-plectic manifold. Moreover, momentum maps and momentum sections on symplectic manifolds, homotopy momentum maps and homotopy momentum sections on multisymplectic manifolds have this structure.

Ключевые слова: Poisson geometry, Lie algebroid, multisymplectic geometry, higher structures.

MSC: 53D17, 53D20, 58A50

Поступила: 13 ноября 2023 г.; в окончательном варианте 27 марта 2024 г.; опубликована 31 марта 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.025


ArXiv: 2302.08193


© МИАН, 2024