RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 034, 15 стр. (Mi sigma2036)

A Weierstrass Representation Formula for Discrete Harmonic Surfaces

Motoko Kotania, Hisashi Naitob

a The Advanced Institute for Materials Research (AIMR), Tohoku University, Japan
b Graduate School of Mathematics, Nagoya University, Japan

Аннотация: A discrete harmonic surface is a trivalent graph which satisfies the balancing condition in the $3$-dimensional Euclidean space and achieves energy minimizing under local deformations. Given a topological trivalent graph, a holomorphic function, and an associated discrete holomorphic quadratic form, a version of the Weierstrass representation formula for discrete harmonic surfaces in the $3$-dimensional Euclidean space is proposed. By using the formula, a smooth converging sequence of discrete harmonic surfaces is constructed, and its limit is a classical minimal surface defined with the same holomorphic data. As an application, we have a discrete approximation of the Enneper surface.

Ключевые слова: discrete harmonic surfaces, minimal surfaces, Weierstrass representation formula.

MSC: 53A70, 53A10, 52C26

Поступила: 17 июля 2023 г.; в окончательном варианте 12 апреля 2024 г.; опубликована 17 апреля 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.034


ArXiv: 2307.08537


© МИАН, 2024