Аннотация:
We study the Jacobi–Trudi-type determinant which is conjectured to be the $q$-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type $C_n$. Like the $D_n$ case studied by the authors recently, applying the Gessel–Viennot path method with an additional involution and a deformation of paths, we obtain an expression by apositive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
Ключевые слова:quantum group; $q$-character; lattice path; Young tableau.