RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 042, 11 стр. (Mi sigma2044)

Asymptotic Expansions of Finite Hankel Transforms and the Surjectivity of Convolution Operators

Yasunori Okadaa, Hideshi Yamaneb

a Graduate School of Science, Chiba University, Yayoicho 1-33, Inage-ku, Chiba, 263-8522, Japan
b Department of Mathematical Sciences, Kwansei Gakuin University, Uegahara, Gakuen, Sanda, Hyogo, 669-1330, Japan

Аннотация: A compactly supported distribution is called invertible in the sense of Ehrenpreis–{Hörmander} if the convolution with it induces a surjection from $\mathcal{C}^{\infty}(\mathbb{R}^{n})$ to itself. We give sufficient conditions for radial functions to be invertible. Our analysis is based on the asymptotic expansions of finite Hankel transforms. The dominant term may be the contribution from the origin or from the boundary of the support of the function. For the proof, we propose a new method to calculate the asymptotic expansions of finite Hankel transforms of functions with singularities at a point other than the origin.

Ключевые слова: convolution, asymptotic expansion, Hankel transform, invertibility.

MSC: 45E10, 33C10, 44A15

Поступила: 10 января 2024 г.; в окончательном варианте 21 мая 2024 г.; опубликована 27 мая 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.042


ArXiv: 2401.03438


© МИАН, 2024