RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 047, 70 стр. (Mi sigma2049)

Unrestricted Quantum Moduli Algebras, II: Noetherianity and Simple Fraction Rings at Roots of 1

Stéphane Baseilhac, Philippe Roche

IMAG, Univ Montpellier, CNRS, Montpellier, France

Аннотация: We prove that the quantum graph algebra and the quantum moduli algebra associated to a punctured sphere and complex semisimple Lie algebra $\mathfrak{g}$ are Noetherian rings and finitely generated rings over $\mathbb{C}(q)$. Moreover, we show that these two properties still hold on $\mathbb{C}\big[q,q^{-1}\big]$ for the integral version of the quantum graph algebra. We also study the specializations $\mathcal{L}_{0,n}^\epsilon$ of the quantum graph algebra at a root of unity $\epsilon$ of odd order, and show that $\mathcal{L}_{0,n}^\epsilon$ and its invariant algebra under the quantum group $U_\epsilon(\mathfrak{g})$ have classical fraction algebras which are central simple algebras of PI degrees that we compute.

Ключевые слова: quantum groups, invariant theory, character varieties, skein algebras, TQFT.

MSC: 16R30, 17B37, 20G42, 57M27, 57R56, 81R50

Поступила: 11 мая 2023 г.; в окончательном варианте 7 мая 2024 г.; опубликована 6 июня 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.047


ArXiv: 2106.04136


© МИАН, 2024