RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 048, 55 стр. (Mi sigma2050)

Oriented Closed Polyhedral Maps and the Kitaev Model

Kornél  Szlachányi

Wigner Research Centre for Physics, Budapest, Hungary

Аннотация: A kind of combinatorial map, called arrow presentation, is proposed to encode the data of the oriented closed polyhedral complexes $\Sigma$ on which the Hopf algebraic Kitaev model lives. We develop a theory of arrow presentations which underlines the role of the dual of the double $\mathcal{D}(\Sigma)^*$ of $\Sigma$ as being the Schreier coset graph of the arrow presentation, explains the ribbon structure behind curves on $\mathcal{D}(\Sigma)^*$ and facilitates computation of holonomy with values in the algebra of the Kitaev model. In this way, we can prove ribbon operator identities for arbitrary f.d. C$^*$-Hopf algebras and arbitrary oriented closed polyhedral maps. By means of a combinatorial notion of homotopy designed specially for ribbon curves, we can rigorously formulate “topological invariance” of states created by ribbon operators.

Ключевые слова: Hopf algebra; polyhedral map; quantum double; ribbon operator; topological invariance

MSC: 05E99, 16T05, 81T25

Поступила: 7 апреля 2023 г.; в окончательном варианте 14 мая 2024 г.; опубликована 8 июня 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.048


ArXiv: 2302.08027


© МИАН, 2024