RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 107, 12 стр. (Mi sigma233)

Эта публикация цитируется в 27 статьях

Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian

Tamáas Fülöp

Montavid Research Group, Budapest, Soroksári út 38-40, 1095, Hungary

Аннотация: For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and $V(x)=g/x^2$ with the coefficient $g$ in a certain range ($x$ being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.

Ключевые слова: quantum mechanics; singular potential; self-adjointness; boundary condition.

MSC: 81Q10

Поступила: 7 августа 2007 г.; в окончательном варианте 8 ноября 2007 г.; опубликована 16 ноября 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.107



Реферативные базы данных:
ArXiv: 0708.0866


© МИАН, 2024