RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 010, 23 стр. (Mi sigma263)

Эта публикация цитируется в 6 статьях

Global Attraction to Solitary Waves in Models Based on the Klein–Gordon Equation

Alexander I. Komechab, Andrew A. Komechcb

a Faculty of Mathematics, University of Vienna, Wien A-1090, Austria
b Institute for Information Transmission Problems, B. Karetny 19, Moscow 101447, Russia
c Mathematics Department, Texas A\&M University, College Station, TX 77843, USA

Аннотация: We review recent results on global attractors of $\mathbf U(1)$-invariant dispersive Hamiltonian systems. We study several models based on the Klein–Gordon equation and sketch the proof that in these models, under certain generic assumptions, the weak global attractor is represented by the set of all solitary waves. In general, the attractors may also contain multifrequency solitary waves; we give examples of systems which contain such solutions.

Ключевые слова: global attractors; solitary waves; solitary asymptotics; nonlinear Klein–Gordon equation; dispersive Hamiltonian systems; unitary invariance.

MSC: 35B41; 37K40; 37L30; 37N20; 81Q05

Поступила: 1 ноября 2007 г.; в окончательном варианте 22 января 2008 г.; опубликована 31 января 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.010



Реферативные базы данных:
ArXiv: 0711.0041


© МИАН, 2024