RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 016, 11 стр. (Mi sigma269)

Эта публикация цитируется в 4 статьях

The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

Roman Ya. Matsyuk

Institute for Applied Problems in Mechanics and Mathematics, 15 Dudayev Str., L'viv, Ukraine

Аннотация: The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.

Ключевые слова: covariant Ostrohrads'kyj mechanics; spin; concircular geometry; uniform acceleration.

MSC: 53A40; 70H50; 49N45; 83C10

Поступила: 31 октября 2007 г.; в окончательном варианте 18 января 2008 г.; опубликована 6 февраля 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.016



Реферативные базы данных:
ArXiv: 0802.0751


© МИАН, 2024