RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 033, 15 стр. (Mi sigma286)

Эта публикация цитируется в 4 статьях

The Fundamental $k$-Form and Global Relations

Anthony C. L. Ashton

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK

Аннотация: In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411–1443] A. S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that couples initial and boundary data. The global relation can be found by constructing a differential form dependent on some spectral parameter, that is closed on the condition that a given partial differential equation is satisfied. Such a diferential form is said to be fundamental [Quart. J. Mech. Appl. Math. 55 (2002), 457–479]. We give an algorithmic approach in constructing a fundamental $k$-form associated with a given boundary value problem, and address issues of uniqueness. Also, we extend a result of Fokas and Zyskin to give an integral representation to the solution of a class of boundary value problems, in an arbitrary number of dimensions. We present an extended example using these results in which we construct a global relation for the linearised Navier–Stokes equations.

Ключевые слова: fundamental $k$-form; global relation; boundary value problems.

MSC: 30E25; 35E99; 35P05

Поступила: 20 декабря 2007 г.; в окончательном варианте 3 марта 2008 г.; опубликована 20 марта 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.033



Реферативные базы данных:
ArXiv: 0711.4707


© МИАН, 2024