RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 034, 23 стр. (Mi sigma287)

Эта публикация цитируется в 12 статьях

Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems

Gloria Marí Beffa

Department of Mathematics, University of Wisconsin, Madison, WI 53705, USA

Аннотация: In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161–213; 55 (1999), 127–208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection.

Ключевые слова: invariant evolutions of curves; Hermitian symmetric spaces; Poisson brackets; differential invariants; projective differential invariants; equations of KdV type; completely integrable PDEs; moving frames; geometric realizations.

MSC: 37K25; 53A55

Поступила: 14 ноября 2007 г.; в окончательном варианте 13 марта 2008 г.; опубликована 27 марта 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.034



Реферативные базы данных:
ArXiv: 0803.3866


© МИАН, 2024