RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 052, 17 стр. (Mi sigma305)

Эта публикация цитируется в 43 статьях

Zhedanov's Algebra $AW(3)$ and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra

Tom H. Koornwinder

Korteweg-de Vries Institute, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Аннотация: This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra (DAHA) corresponding to the Askey–Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to $AW(3)$ with an additional relation that the Casimir operator equals an explicit constant. A similar result with $q$-shifted parameters holds for the antispherical subalgebra. Some theorems on centralizers and centers for the algebras under consideration will finally be proved as corollaries of the characterization of the spherical and antispherical subalgebra.

Ключевые слова: Zhedanov's algebra $AW(3)$; double affine Hecke algebra in rank one; Askey–Wilson polynomials; spherical subalgebra.

MSC: 33D80

Поступила: 15 ноября 2007 г.; в окончательном варианте 3 июня 2008 г.; опубликована 10 июня 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.052



Реферативные базы данных:
ArXiv: 0711.2320


© МИАН, 2024