RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 058, 52 стр. (Mi sigma311)

Эта публикация цитируется в 4 статьях

Contact Geometry of Hyperbolic Equations of Generic Type

Dennis The

McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada

Аннотация: We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge–Ampère (class 6-6), Goursat (class 6-7) and generic (class 7-7) hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional) generic hyperbolic structures is also given.

Ключевые слова: contact geometry; partial differential equations; hyperbolic; generic; nonlinear.

MSC: 35A30; 35L70; 58J70

Поступила: 10 апреля 2008 г.; в окончательном варианте 11 августа 2008 г.; опубликована 19 августа 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.058



Реферативные базы данных:
ArXiv: 0804.1559


© МИАН, 2024