RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 068, 33 стр. (Mi sigma321)

Эта публикация цитируется в 44 статьях

Wall Crossing, Discrete Attractor Flow and Borcherds Algebra

Miranda C. N. Chenga, Erik P. Verlindeb

a Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02128, USA
b Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE, Amsterdam, the Netherlands

Аннотация: The appearance of a generalized (or Borcherds–) Kac–Moody algebra in the spectrum of BPS dyons in $\mathcal N=4$, $d=4$ string theory is elucidated. From the low-energy supergravity analysis, we identify its root lattice as the lattice of the $T$-duality invariants of the dyonic charges, the symmetry group of the root system as the extended $S$-duality group $PGL(2,\mathbb Z)$ of the theory, and the walls of Weyl chambers as the walls of marginal stability for the relevant two-centered solutions. This leads to an interpretation for the Weyl group as the group of wall-crossing, or the group of discrete attractor flows. Furthermore we propose an equivalence between a “second-quantized multiplicity” of a charge- and moduli-dependent highest weight vector and the dyon degeneracy, and show that the wall-crossing formula following from our proposal agrees with the wall-crossing formula obtained from the supergravity analysis. This can be thought of as providing a microscopic derivation of the wall-crossing formula of this theory.

Ключевые слова: generalized Kac–Moody algebra; black hole; dyons.

MSC: 81R10; 17B67

Поступила: 1 июля 2008 г.; в окончательном варианте 23 сентября 2008 г.; опубликована 7 октября 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.068



Реферативные базы данных:
ArXiv: 0806.2337


© МИАН, 2024