RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 006, 60 стр. (Mi sigma34)

Эта публикация цитируется в 72 статьях

Orbit Functions

Anatoliy Klimyka, Jiri Paterab

a Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., Kyiv, 03143 Ukraine
b Centre de Recherches Mathématiques, Université de Montréal, C.P.6128-Centre ville, Montréal, H3C3J7, Québec, Canada

Аннотация: In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space $E_n$ are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter–Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group $G$ of rank $n$ from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space $E_n$. Orbit functions are solutions of the corresponding Laplace equation in $E_n$, satisfying the Neumann condition on the boundary of $F$. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.

Ключевые слова: orbit functions; Coxeter–Dynkin diagram; Weyl group; orbits; products of orbits; orbit function transform; finite orbit function transform; Neumann boundary problem; symmetric polynomials.

MSC: 33-02; 33E99; 42C15; 58C40

Поступила: 4 января 2006 г.; опубликована 19 января 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.006



Реферативные базы данных:
ArXiv: math-ph/0601037


© МИАН, 2024